TL;DR
SNARK 的構建流程是什么樣的?
待證明的問題-算術電路-R1CS-多項式
為什么最終要轉換成多項式?
因為多項式的特性有效的縮短了驗證時間,實現了簡潔性。
是如何實現零知識的?
簡單來說,就是在推導多項式的過程中,多選取兩個隨機數,以此推導出的多項式能讓驗證者無法從中獲取原多項式的系數,即證明者的秘密輸入,以此實現 ZK。
怎么實現非交互?
在證明開始前,引入了一個第三方,即可信設置,將原本驗證者挑選隨機數的任務交給了可信設置,從而實現驗證者和證明者之間的非交互。
ZK 技術近兩年在 Web3 領域備受關注。從 Rollup 開始,越來越多不同賽道的項目都開始嘗試使用 ZK 技術。在這之中,SNARK 和 STARK 是大家最常聽到的兩個名詞,為了后期更好地理解ZK技術的應用,本文將從非技術的角度簡化闡述 SNARK 的證明邏輯,然后會以 Scroll 的 zk Rollup 為例來說明 zk 證明系統的運行。
文章旨在闡述基本邏輯,便于閱讀,會盡量避免術語使用,且不會深入探討數學轉換等細節,如有疏漏,敬請諒解。
2012年1月,加州大學伯克利分校教授 Alessandro Chiesa 與人合作撰寫了 SNARK 的論文,提出了術語 zk-SNARK。
zk-SNARK,全稱 Zero-Knowledge-Succinct Non-Interactive Argument of Knowledge,是使用了 ZK技術的一種證明系統。需要注意的是,SNARK 是一類方案的名稱,有很多不同的組合方法都可以實現 SNARK。
零知識(Zero-Knowledge):只有證明者知道的內容將會被隱藏,除了證明者,其他任何人都無法看到。
簡短(Succinct):生成的證明小,驗證時間快。
非交互性(Non-Interactive):證明者和驗證者之間交互很少,甚至沒有。
歐易OKX通過zk-STARK技術升級POR系統:據公告顯示,歐易OKX正式升級儲備金證明POR系統,成為行業內首個將zk-STARK (零知識可擴展的透明知識論證)加密證明技術用在儲備金證明系統的交易平臺,并同步將系統開源。該技術由V神的理論發展而來,旨在通過區塊鏈確保計算的完整性和隱私。OKX在其中加入了余額總和約束、非負約束、包含性約束3項條件,以保證證明平臺持有的用戶資產數據的準確有效,持續引領行業透明度的標準。
同時,歐易OKX今日正式發布第六次儲備金證明(PoR),BTC、ETH、USDT儲備金率均超過100%,分別為103%、103%、103%,總計價值達104億美元,自 2023 年 1 月以來增長了 39%。除原有的BTC、ETH、USDT外,歐易OKX將公示幣種數量從3個增至21個,新增USDC、XRP、DOGE、SOL、OKB、APT、DASH、DOT、ELF、EOS、ETC、FIL、LINK、OKT、PEOPLE、TON、TRX、UNI,21個幣種的儲備金率均超過100%。[2023/4/28 14:33:21]
論證(Argument):驗證者的驗證只對計算能力受限的證明者有效,因為擁有超強計算能力的證明者可以偽造證明,也就是說,系統具備計算可靠性。
知識(Knowledge):證明者只有知道一些驗證者不知道的信息才能計算出證明。
zk-SNARK 要解決的是“計算驗證問題”,即驗證者能否在不知道證明者隱私的情況下,高效地驗證計算結果。
下面將以 zk-SNARK 的簡化版構建流程來說明該系統是如何結合零知識達到高效驗證的。
zk-SNARK 的構建
將待證明問題轉化為多項式
簡單來說,SNARK 的思路是將證明陳述是否成立轉換成證明多項式等式是否成立。
整個轉換過程:待求證的問題?算術電路?R1CS?多項式?多項式之間的轉換
待求證的問題?算術電路
要通過計算證明一個問題是否為真,首先就要將待證明的問題轉化成一個計算問題,而任何計算都可以描述為一個算術電路。
ZK-RaaS提供商Opside完成400萬美元種子輪融資:4月6日消息,ZK-RaaS(ZK-rollup-as-a-service)提供商 Opside 宣布完成 400 萬美元種子輪融資,本輪融資由 Web3.com Ventures 領投。種子輪資金將用于加速 Opside 的發展,擴大其團隊并擴大其運營規模。[2023/4/6 13:48:06]
算術電路通常由常數、“加法門”、“乘法門”組成,通過門的疊加,我們可以構建出復雜的多項式。
上圖中的算術電路構建的多項式為:(Inp1+Inp2)*(-1)= Output
現實中的問題要轉為算術電路極其復雜,我們可以將之簡單理解為:輸入一些內容,內容經過電路轉化,最終輸出一個結果。即:
基于算術電路的概念,我們構造一個用于生成證明的算術電路,即:
該電路中包含了兩組輸入,公開輸入 x 和秘密輸入w。公開輸入x意味該內容是待證明問題的固定值,驗證者和證明者都知曉,秘密輸入 w 則意味著該內容只有證明者知曉。
我們構建的算術電路為 C( x, w ) = 0,即通過電路輸入x與w,最終的輸出結果為0。證明者和驗證者知道電路輸出為0,且公有輸入為x的情況下,證明者需要證明自己知道秘密輸入 w。
算術電路?R1CS
我們最終需要一個多項式,但算術電路不能直接轉化為多項式,需要 R1CS 作為二者間的媒介,故先將算術電路轉換為 R1CS。
R1CS,全名為 Rank-1 Constraints System(一階約束系統),是一種描述電路的語言,本質上是一種矩陣向量方程。具體來說,R1CS 是由三個向量 (a,b,c) 組成的序列,R1CS 的解是一個向量 s,其中 s 必須滿足方程:
跨鏈橋Hop測試網已集成ConsenSys zk-EVM:2月26日消息,跨鏈橋Hop Protocol近日宣布,ConsenSys zk-EVM已集成到Hop的測試網站點,當測試網向公眾開放時,用戶將能夠從任何支持的測試網鏈中發送Goerli ETH到新的ConsenSys zk-EVM。
Hop稱,該集成最初是ConsenSys zk-EVM團隊在Hop治理論壇上提出的建議,并一致通過了治理周期的所有階段。[2023/2/26 12:30:18]
其中 . 代表內積運算。
此間具體的數學轉換可以參見 Vatalik:Quadratic Arithmetic Programs: from Zero to Hero
我們只需要知道,R1CS 的作用是對算術電路中的每個門的描述進行限定,使得每個門之間的向量滿足以上關系。
R1CS?多項式
在得到 R1CS 這個媒介后,我們就可以將其等價轉換成多項式。
矩陣和多項式之間可以進行如下圖所示的等價轉換:
轉化為矩陣
根據上述等價轉換的性質,對于滿足 R1CS 的矩陣,我們可以使用拉格朗日插值法,還原出多項式每一項系數,基于這個關系,我們可以將 R1CS 矩陣推導為多項式關系,即:
注:A, B, C分別代表一個多項式
一個多項式對應我們想要證明的問題所對應的一個R1CS矩陣約束,通過以上轉化,我們可以知道,多項式之間滿足以上關系,就說明我們的R1CS矩陣是正確的,從而說明證明者在算術電路中的秘密輸入也是正確的。
V神:以太坊不需要為Layer 1使用單一的ZK-EVM實現進行標準化:金色財經報道,以太坊創始人Vitalik Buterin發文解釋了“不同類型的ZK-EVM和類似ZK-EVM的項目,以及它們之間的權衡”。V神例舉了描述了多個EVM等價的不同“類型”的分類,以及嘗試實現每種類型的好處和成本。
V神總結稱,就我個人而言,我希望隨著時間的推移,通過ZK-EVM的改進和以太坊本身的改進相結合,使其對ZK-SNARK更加友好,一切都將成為Type1。在這樣的未來,我們將有多個ZK-EVM實現,它們既可以用于ZK匯總,也可以用于驗證以太坊鏈本身。
從理論上講,以太坊不需要為Layer1使用單一的ZK-EVM實現進行標準化;不同的客戶可以使用不同的證明,因此我們繼續從代碼冗余中受益。但是,要實現這樣的未來,還需要相當長的時間。與此同時,我們將在擴展以太坊和基于以太坊的ZK-rollup的不同路徑中看到許多創新。[2022/8/4 12:02:16]
到這我們的問題就簡化為:驗證者隨機挑選一個數 x,讓證明者證明 A(x) * B(x)=C(x) 成立,如果成立,說明證明者的秘密輸入正確。
多項式之間的轉換
復雜的算術電路中,有成千上萬個門,我們需要對每個門驗證其是否滿足R1CS約束。換句話說,我們需要驗證數次 A(x) * B(x)=C(x) 等式成立,但是逐次單獨驗證的效率太低,如何能做到一次性驗證所有門的約束的正確性?
為了方便理解,我們引入一個 P(x),令 P(x) = A(x) * B(x) – C(x)
我們知道,任意的一個多項式只要它有解,就可以將它分解成線性多項式。故我們將 P(x) 拆分為 F(x) 和 H(x),即:
然后將 F(x) 公開,這就意味著存在一個 H(x) = P(x)/F(x) ,從而我們要驗證的多項式最終轉變為 :
動態 | Zcoin首席運營官:zk-SNARKs或允許惡意代理商制造額外令牌:據cryptobriefing報道,Zcoin(XZC)首席運營官Reuben Yap表示,未經證實的加密假設和zk-SNARK的潛在bug會將使用該算法的區塊鏈(如Zcash)置于安全風險之下。 zk-SNARKs(Zcash使用的隱私算法)的基本缺陷可能會允許惡意代理商制造額外的令牌。[2019/1/18]
A(x) * B(x) – C(x):包含多項式的系數,只有證明者知,即秘密輸入。
F(x) :一個公開的多項式,驗證者和證明者皆知,即公開輸入。
H(x) :證明者通過計算得知,驗證者不可知。
而最終要證明的問題為:多項式等式 A(x) * B(x) – C(x) = F(x) * H(x),在所有x上都成立。
現在只需要驗證一次多項式就可以驗證所有約束是否滿足矩陣關系。
到這里我們就完成了將待證明的問題轉化成只需要驗證一次的多項式,實現了系統的簡潔性。
但是這個實現的簡潔性是讓驗證者的驗證時間縮短,那證明大小呢?
簡單來說,在證明協議中,使用的是 Merkle 樹的結構,這有效的降低了證明的大小。
整個轉換過程完成以后,自然而然的會產生兩個問題:
為什么要轉換成多項式?
因為多項式實現了證明的簡潔性。零知識證明的問題就是驗證計算滿足多個約束的問題,而多項式可以一個點驗證多個約束。換句話說,驗證者本來要驗證 n 次才能確認的問題,現在只需要驗證一次就能極大概率地確認證明的正確性。
為什么驗證多項式上的一個點,就能確定兩個多項式 A(x) * B(x) – C(x )= F(x) * H(x) 成立?
這是由多項式的特性決定的,即:一個多項式在任意點的計算結果都可以看做是其唯一身份的表示。對于兩個多項式,它們只會在有限的點上相交。
對于上述的兩個 d 階多項式:A(x) * B(x) – C(x) 和 F(x) * H(x),如果它們不相等,它們最多只會在d 個點上相交,也就是在 d 個點上的解相同。
完成了多項式的轉換,我們就要進入多項式證明階段。
證明多項式成立
為了便于闡述,我們采用多項式 P(x) = F(x) * H(x)。
現在,證明者要證明的問題是:在所有 x 上,P(x) = F(x) * H(x)。
證明者和驗證者對以上多項式的驗證過程如下:
驗證者選擇隨機挑戰點 x,假設 x = s;
證明者收到 s 后,計算 P(s) 和 H(s),并把這兩個值給驗證者;
驗證者先計算 F(s),再計算 F(s) * H(s),并判斷 F(s) * H(s) = P(s) 是否成立,若成立則驗證通過。
但是我們仔細思考就會發現以上流程存在一些問題:
證明者能夠知道整個等式的信息,如果收到隨機點 s,他能計算出 F(s),然后構造出一對假的 P(x) 和 H(x),使得P(s) = F(s) * H(s) ,以此欺騙驗證者。
證明者不使用驗證者給出的 s 計算 F(s) 和 H(s),而是用其他值計算,以此欺騙驗證者。
驗證者收到的值是由公共輸入和證明者的隱私輸入一起計算出來的,如果驗證者算力極大,可以破解證明者的隱私輸入。
針對上述問題,我們進行以下優化:
驗證者在選取了隨機點 s 后,對 s 進行同態加密,同態加密意味著加密后計算的解=計算后加密的解;在這種加密形式下,證明者能夠計算出解,但不能構造假的 P(x) 和 H(x)。
在驗證者選擇挑戰點 s 時,再選取一個隨機參數 λ,額外生成一個 s 和 λ 之間的線性關系。驗證者把同態加密后的 s 和 λ 都發給證明者。待證明者將證明發回,驗證者除了驗證證明是否為真,還需要驗證隨機參數λ 與 s 之間的關系。
針對驗證者可破解秘密輸入的問題,我們就可以引入 ZK。縱覽整個證明,我們可以發現在驗證過程中,證明者發給驗證者的只有計算出的多項式的值,驗證者可以通過值倒推出多項式的系數,即證明者的秘密輸入。為了防止驗證者倒推,我們可以從 R1CS 推出多項式 A、B、C 的時候,多選取兩個隨機數并增加一組取值,這樣還原出來的多項式比原來的多項式多1階,從而讓驗證者無法從加密后的多項式中獲取原多項式的信息,以此實現 ZK。
優化以后我們發現證明系統依舊需要驗證者和證明者之間進行交互,如何才能實現非交互?
實現非交互
為了實現非交互,SNARK 引入了可信設置(Setup)。
換句話說,在證明開始前,將原本屬于驗證者的選擇隨機挑戰點的權力交給一個可信的第三方,第三方選擇了隨機參數 λ 后,將加密后的 λ 放在 R1CS 電路中,以此生成 CRS(Common Reference String,公共參考字串)。驗證方能從 CRS 中獲取屬于自己的 Sv,證明方能從 CRS 中獲取屬于自己的 Sp。
需要注意的是,λ 在生成 Sv 和 Sp 后,需要被銷毀,若 λ 被泄露,可能被用來通過虛假驗證偽造交易。
zk-SNARK 工作流程
在明白 SNARK 的構建流程后,基于我們構造的可生成證明的算術電路,zk-SNARK 的證明流程如下:
Setup:(C circuit, λ)= (Sv, Sp)
通過電路 C 和隨機參數 λ ,生成后續證明者和驗證者使用的隨機參數 Sv、Sp。
Prove(Sp,x,w) = Π
證明者通過隨機參數 Sp,公共輸入 x,秘密輸入 w,計算出證明 Π。
Verify(Sv,x,Π) == (? w s.t. C(x,w))
驗證者通過隨機參數 Sv,公共輸入 x 和證明 Π 來驗證是否存在 C(x,w)=0。同時,驗證證明是否是通過電路 C 計算得出。
到此,我們就完成了整個 zk-SNARK 的講解,下面來看看實際運用的案例。
案例:以 Scroll 的 zk Rollup 為例
證明系統的作用是讓證明者說服驗證者相信一件事;
對于 zk 證明系統而言,是要讓驗證者相信由 zk 算法計算出的 Zero-Knowledge Proof(零知識證明)為真。
我們以 Scroll 的 zk Rollup 為例來說明 zk 證明系統的運行。
Rollup 是指鏈下計算,鏈上驗證。對 zk Rollup 而言,交易在鏈下執行后,證明者需要對交易執行后產生的新的狀態根生成 zk 證明,再將證明傳到 L1 Rollup 合約進行鏈上驗證。
需要注意的是,在 zk Rollup 中存在兩類區塊:
L1 Rollup 區塊:提交到以太坊的區塊
L2 區塊:用戶在 L2 上提交的交易打包而成的區塊
以下是 Scroll 的 zk Rollup 的工作流程:
用戶在 L2 發起交易,Sequencer 檢索到交易,在鏈下執行交易并生成 L2 區塊和新的狀態根;同時將交易數據和新的狀態根提交給以太坊上的 Rollup 合約(提交交易數據是為了實現數據可用性);
當L2區塊生成時,Coordinator 會從 Sequencer 那收到該區塊的執行軌跡,然后將該軌跡隨機分配給任意一個 Roller;
Roller 將接收到的執行軌跡轉換為電路,且為每個電路生成有效性證明,然后將該證明發回給 Coordinator;
每生成 k 個 L2塊,Coordinator 就會發送一個聚合任務給另一個 Roller,以將 k 個塊的證明聚合為單個聚合證明;
Coordinator 將單個聚合證明提交給 Rollup 合約,Rollup 合約結合之前提交的狀態根和交易數據一起驗證聚合證明,驗證通過則相應的區塊就被視為在 Scroll 上最終確定。
從以上流程可以看到,Roller 是該系統中的證明者,Rollup 合約是驗證者。Roller 對在鏈下執行的交易生成一個 zk 證明;Rollup 合約驗證該證明,若驗證通過,Rollup 合約就會直接采納提交的狀態根作為自己新狀態根。
金色早8點
Odaily星球日報
金色財經
Block unicorn
DAOrayaki
曼昆區塊鏈法律
根據 Numen 鏈上監控,2023年6月1日10點7分55秒(UTC+8),Cellframe Network(@cellframenet)在 Binance Smart Chain 上因為流.
1900/1/1 0:00:00作者:Binance Research and Binance V 機構加密前景調查基于一項全球調查,來自 208 名幣安機構客戶和 VIP 用戶的回復.
1900/1/1 0:00:00LSDfi很熱,主流交易所也很關注。比如,Binance連續上線了Maverick和Pendle,Binance Research也在三個星期內連發兩份LSDfi研報.
1900/1/1 0:00:00Parity 開發者負責人 Shawn Tabrizi 最近接受了 Fundamentals 播客的專訪,討論了 Polkadot 的核心價值主張,主要關注的優化功能.
1900/1/1 0:00:00模塊化區塊鏈正在改變我們思考和建設去中心化應用程序的方式。為什么要關注模塊化區塊鏈?為什么這次會有所不同?我們可以寫上一整本書來講述模塊化區塊鏈的妙處,但大多數人都沒有時間能夠讀完一整本書,所以.
1900/1/1 0:00:00作者: Vincent @thecryptoskanda; Xuan twitter: @lvxuan147Sui正式網已經上線接近一個月.
1900/1/1 0:00:00