比特幣交易所 比特幣交易所
Ctrl+D 比特幣交易所
ads

技術入門 | 深入理解零知識證明算法之Zk-stark:Low Degree Testing_LIC

Author:

Time:1900/1/1 0:00:00

前言

本系列的第二篇文章,以超市收據為例,描述了Arithmetization的具體過程。本文將以另外一個例子為基礎,在回顧Arithmetization過程的同時,將內容引申到多項式的LDT過程。

新的實例

AliceClaim:“我有1000,000個數,他們都在范圍內”。為了方便驗證者Bob驗證,Alice首先要對Claim進行Arithmetization轉換。過程如下圖1所示(圖中:黑色箭頭代表主流程,紅色箭頭代表附加說明信息,黃色圈對應下面詳細說明的索引)

下面具體說明一下對應流程:

首先生成執行軌跡(EXCUTETRACE),事實上,它是一張表,總共有1000,000行;

生成多項式約束(PolynomialConstrains),多項式約束滿足執行軌跡的每一行(個人理解:步驟1,2沒有一定的先后依賴關系,只是習慣上先生成執行軌跡,再生成約束多項式);

對執行軌跡進行插值,得到一個度小于1000,000的多項式P(x)、x取值,并計算更多點上的值,x取值范圍擴大到(Reed-Solomen系統編碼);假如,證明者有一個值不在范圍內(圖中紅線1/2所示),假如就是第1000,000個點,它實際的值是13,大于9,其插值后的曲線G(x)如圖所示,圖中P(x)為有效曲線,G(x)為無效曲線。可以看出,兩條曲線在變量x取值范圍內,最多有1000,000個交點,即有1000,000,000-1000,000個點不同,這很重要。

將插值后的多項式P(x)和多項式約束進行組合變換,最終得到的形式為:

Chainge橙子錢包:愿意提供技術支持以圍堵黑客盜幣:針對晚間Poly Network的跨鏈池發生黑客盜幣事件,Chainge創始人錢德君攜去中心化跨鏈核心技術擁有方Fusion、跨鏈漫游服務商Chainge及跨鏈橋技術服務商Anyswap公開發推文稱,愿意提供技術支持以共同圍堵黑客盜幣。[2021/8/10 1:46:48]

Q(P(x))=Ψ(x)*T(x),其中T(x)=(x-1)(x-2)……(x-1000,000),x取值

其中,d(Q(P(x)))=10,000,000、d(Ψ(x))=10,000,000-1000,000、d(T(x))=1000,000;

至此,問題就轉化成了,Alice宣稱“多項式等式在變量x取值范圍內成立”的問題。那么驗證者Bob該如何驗證呢?具體過程如下:

證明者Alice在本地計算多項式P(x)、Ψ(x)在所有點上的取值,對!從1至1000,000,000,并形成一個默克爾樹;

驗證者Bob隨機的從內選取一個值ρ,并發送給證明者Alice,要求其返回對應的信息;

證明者Alice返回P(ρ)、Ψ(ρ)、root、AuthorizedPath(P(ρ)、Ψ(ρ))給驗證者Bob;

驗證者Bob首先根據默克爾樹驗證路徑驗證值P(ρ)、Ψ(ρ)的有效性,然后等式Q(P(ρ))=Ψ(ρ)*T(ρ),如果成立,則驗證通過;

完整性分析:如果驗證者Alice是誠實的,那么等式Q(P(x))一定會被目標多項式T(x)整除,因此必定存在一個d(Ψ(x))=d(Q(P(x)))-d(T(x))的多項式Ψ(x),滿足Q(P(x))=Ψ(x)*T(x),因此對于任意的x,取值在之間,等式都會成立;

可靠性分析:如果驗證者Alice是不誠實的,即類似于步驟3里的假設,在x=1000,000上,P(x)的取值為13,那么Q(P(1000,000))!=0,但是等式右邊,T(1000,000)=0,因此Q(P(x))!=Ψ(x)*T(x),即等式兩邊是不相等的多項式,其交點最多有10,000,000個,因此通過一次隨機選取,其驗證通過的概率僅為10,000,000/1000,000,000=1/100=0.01,經過k次驗證,其驗證通過的概率僅是1-10(^-2k);

CasperLabs CEO Mrinal: 公共區塊鏈技術的潛在前景比以往任何時候都更加明顯:CasperLabs CEO Mrinal在東8區AMA中表示,公共區塊鏈技術的潛在前景比以往任何時候都更加明顯, 政府對像冠狀病這樣的危機的反應已經證明,需要有一種可行的替代方法來替代與當前金融和技術系統配合使用的當前系統。 就像互聯網花了很長時間成為主流一樣,要做很多工作才能確保它成為每個人都在使用的東西。

CasperLabs旨在在不以任何方式犧牲分散性和安全性的情況下擴展區塊鏈,并得到了該領域一些最佳數學家和研究人員的大力幫助。 這與我們專注于創造最開放,最輕松的開發者體驗的激光相結合,有望幫助迎來第三次構造轉變。[2020/4/30]

上述的驗證過程為交互式的,如果是非交互式的,可以利用Fiat-Shamirheuristic進行變換,以默克爾樹的根作為隨機源,生成要查詢的隨機點;

LDT

我們忽略了一種攻擊方式,即針對每一個數x,證明者都隨機生成p,然后根據Ψ(x)=Q(p)/T(x),這些點不在任何一個度小于1000,000的多項式上,但是可以通過驗證者驗證。如下圖2所示:

圖中:紫色的點為隨機生成的點p,這些點大概率不在一個度小于1000,000的多項式上(事實上,可以不考慮前1000,000個點,因為驗證者只會從范圍內取值)。因為即使選擇1000,000個點插值出一個度小于1000,000的多項式,也不能保證其他的點在這個多項式上,因為其他的點是隨機生成的。因此,需要有一種方式,保證證明者P(x)的度是小于1000,000,Ψ(x)的度小于10,000,000-1000,000。這就是LDT的目標,那LDT具體的過程是怎么樣的呢?請繼續往下看。

動態 | “時間銀行”已在多地試水,區塊鏈技術為養老服務提供了新的解決路徑:金色財經報道,“時間銀行”已在北京、南寧、南京、重慶、成都、遵義等多地試水。今年10月起,南京建鄴區桃園居社區更是試點在支付寶里存儲公益時間,為自己兌換養老服務,且整個流程被記錄在區塊鏈上。應用區塊鏈技術,確保“時間”的存儲和兌換公開透明,防止丟失或者被篡改,不僅永久記錄在鏈,將來的某一天,還可以跨機構、跨區域通兌。很顯然,這里有兩個顯而易見的亮點:一則,公共養老服務與公益志愿服務“無縫鏈接”,拉長了老年人養老服務供給側的供應鏈。客觀地說,至少也部分緩解了行政兜底的壓力。二則,區塊鏈技術為養老服務提供了新的解決路徑,其真實社會場景的應用價值在“時間銀行”上直觀凸顯。[2019/11/21]

舉個栗子,如果Alice想證明多項式f(x)的度是小于3的,即有可能是2次的或者是1次的。一般流程如下:

驗證者Bob隨機選取三個值a,b,c,發送給證明者Alice;

證明者Alice返回f(a),f(b),f(c);

驗證者Bob插值出度小于3的多項式g(x),然后再隨機選取一個點d,發送給證明者;

證明者Alice返回f(d);

驗證者Bob比對f(d)和g(d)的值,如果相等,則證明成立。

回歸到一般情況,其過程可以用下圖3表示:

可以看出,如果D很大,Alice和Bob交互的次數則為D+k次,復雜度很高;有沒有一種辦法,使得兩者之間交互的次數小于D的情況下,使得驗證者相信多項式的度是小于D的,直接返回小于D個點肯定是不行的,因為那不能唯一確定一個度小于D的多項式,因此需要證明者需要額外發送一些輔助信息。下面我們以P(x)為例,詳細闡述這個過程(事實上,應該是證明P(x)和Ψ(x)的線性組合小于10,000,000-1000,000,本文重點是LDT,因此只以P(x)為例,這并不影響對LDT的理解)。

動態 | 青島將加強區塊鏈、虛擬現實等信息技術在工業領域的應用:據青島日報消息,近日,青島市發布“高端制造業+人工智能”攻勢作戰方案(2019—2022年)。方案指出,要發展高端軟件。加快發展新型工業APP、工業操作系統、工業防火墻等高端工業軟件與信息技術服務,加強大數據、云計算、物聯網、人工智能、區塊鏈、虛擬現實等信息技術在工業領域的應用,高水平創建中國軟件特色名城。[2019/8/9]

假如P(x)=x+x^999+x^1001+x^999999=x+x^999+x*x^1000+x^999*(x^1000)^999;

此時,我們找到一個二維多項式G(x,y),取值范圍分別是、,滿足:

G(x,y)=x+x^999+x*y+x^999*y^999可以發現,當y=x^1000時,滿足:

G(x,y)=G(x,x^1000)=x+x^999+x*x^1000+x999*(x^1000)^999=P(x)

如果我們能證明G(x,y)相對的x,y的最高度都是小于1000,因為P(x)=G(x,x^1000)上,因此可以相信P(x)的度小于1000,000;如圖4所示:

驗證者把所有的點都計算好,形成一顆默克爾樹。驗證者隨機選擇一行和一列,如圖中紅線1/2所示,對于每一列,它是由關于y的度小于1000的多項式生成,對于每一行,它是由關于x的度小于1000的多項式生成。驗證者從行/列中隨機選擇1010個點,用來驗證對應行/列上的點是否在度小于1000的多項式上,需要注意的是,因為P(x)的點都在上圖的對角線上,因此我們要確保每一行/列對應的對角線上的點也在對應的度小于1000的多項式上,即1010個里面一定要包含對角線的點。

思科正研究群組交流上的區塊鏈技術: 據美國專利與商標局(USPTO)周四發布的一項專利申請顯示,思科(Cisco)正在研究區塊鏈技術。思科在該文件中描述了區塊鏈將如何使人們能夠自發地組成團隊,并在跟蹤成員的同時共享文件和其他信息。思科表示,這將解決專門組建的信息團隊面臨的“常見問題”。[2018/3/31]

可靠性分析:如果原始多項式的度實際上是小于10^6+10999,即P(x)=x+x^999+x^1001+x^1010999,那么對應的G(x,y)為G(x,y)=x+x^999+x*y+x^999*y^1010,即,對于每一個x,G(x,y)是關于y的一元多項式函數,且度d<1010,因此下圖中的每一列所有點都是在度d<1010的多項式上,而不在d<1000的多項式式上。所以如果證明者任然宣稱多項式P(x)的度d<1000,000,則會驗證失敗,其他場景是同樣的道理

那有沒有可能惡意證明者仍以G(x,y)=x+x^999+x*y+x^999*y^999的形式去生成證據呢?這樣會驗證通過嗎?

我們知道,我們在驗證時著重強調了對角線上的那一點一定要在多項式上,我們知道,此時對角線對應的多項式形式是

P(x)=x+x^999+x1001+x^999999,而實際的P(x),我們在這里標記為P`(x),其形式是:

P`(x)=x+x^999+x^1001+x^1010999

因此,如果驗證者恰好選擇的點是兩個多項式的交點,則會驗證通過,事實上,兩個多項式最多有1000,000左右個交點,但是由于隨機選取的點不是證明者自己選取,是由默克爾樹的根為種子隨機生成,因此證明者沒有機會作惡,去可以選取那些能通過驗證的點。

由于總共由10^9個點,因此隨機選取一個點,能驗證成功的概率為10^6/10^9=10^(-3),如果選擇k行,則成功的概率僅為10^(-3k)。

以上可以看出,驗證者和證明者只需要交互1010*2*k個點,就可以完成驗證,假如k=10,則1010*2*10=20100<<10^6。

雖然上述實現了在交互次數小于D的情況下,完整LDT驗證,但是證明者的復雜度過于龐大,至少10^18的復雜度遠遠大于原始的計算,因此需要一些優化方案,降低復雜度。話不多說,直接引入有限域,畢竟在實際項目中,我們可不希望數值本身過于龐大。直接引用費馬小定理的結論:在有限域p內,如果滿足(p-1)能被k整除,則映射x=>x^k的像只有(p-1)/k+1個。下圖5以p=17,映射x=>x^2為例:

圖中,紅色為x^2在有限域p內的象,總共由(p-1)/2+1=9個。同時我們可以發現,9^2和8^2的像一致,10^2和7^2的像一致,以此類推,16^2和1^2的像一致,記住這個現象,對下一張圖的理解有幫助。

因此,在本例中,我們選擇一個素數p=1000,005,001,其滿足:

為素數

p-1能被1000整除

p要大于10^9

因此,在有限域p內,x=>x^1000的像在p內有(p-1)/1000=1000,005個,因此圖4可以變成圖6的形式:

可以看出,列坐標變成了10^6個元素,對角線變成了平行的線條,總共有1000個。還記得上面費馬小定理結論的特殊現象嗎?這就是對角線這種分布的原因,讀者試著去理解(可能讀者會覺得,對角線應該是鋸齒形,不是這種平行的形式,也許你是對的,但是這并不影響驗證流程)。此時證明者的復雜度已經從10^18減少到了10^15次方,證明和驗證過程和步驟3描述的仍然一致。

還能不能繼續優化呢?答案是肯定的。回想起前面所述的驗證過程,對于每一行/列,驗證者都要獲取1000個點進行插值得出一個度小于1000的多項式,仔細觀察圖6,對于每一行,原始數據里不就是有1000個數么?那我們干脆選這些點插值出一個度小于1000的多項式,然后只需要隨機讓證明者再計算任何一列,并且證明沿著列上的點都在度小于1000的多項式上,并且列上的點也在對應的利用原始數據插值出的行多項式上。此時,證明者復雜度從10^15減少到了10^9次方。

總結:個人理解,從步驟1到步驟5,其實是PCP到IOP的選擇過程。

PCP要求證明者生成全部的證據,然后驗證者多次隨機選取其中的某一部分進行驗證,但是這樣,證明者的復雜度仍然很高;

IOP要求證明者不用生成全部的證據,根據多次的交互,每次生成只需生成部分證據,使得證明的復雜度和D呈近似線性關系;

證明者復雜度已經降低到了與D呈擬線性關系,驗證者的復雜度雖然是亞線性,交互次數已經低于D,但是能不能優化到更低呢?基于證明復雜度的最優設置,我們繼續探索驗證復雜度的優化之路,回顧P(x)=x+x^999+x^1001+x^999999=x+x*(x^2)^499+x*(x^2)^500+x*(x^2)*499999,令G(x,y)=x+x*y^499+x*y^500+x*y^499999,則當y=x^2時,有G(x,y)=G(x,x^2)=x+x*(x^2)^499+x*(x^2)^500+x*(x^2)*499999=P(x)。最終的圖應如下圖7所示:

從圖中可知:

證明則復雜度仍為10^9次方;

每一行上的點都在度d<2的多項式上,因為當y取固定值時,G(x,y)就是關于x的一次多項式;

每一列上的點都在度d<D/2的多項式上,證明者需要證明這個多項式是小于D/2的,假定這個多項式為P1(x),這個時候,并非驗證者選取大于D/2個點去驗證,因為驗證復雜度仍然不夠低,而是對這一列再一次用到類似于P(x)的處理過程,如圖7中下面的圖所示,以此循環,直到可以直接判斷列上的多項式的度為止,類似于行。

總結

至此,本篇文章就結束了,總結下來,本文主要闡述了以下幾個內容:

如何轉換問題形式--Arithmetization

為何需要LDT--為了驗證簡潔

LDT的大概過程--二分法驗證,類似于FFT

降低LDT的復雜度--有限域+IOP

至于LDT的詳細過程,將留給本系列的最后一篇,敬請關注。

謝謝大家,歡迎批評指正,有任何問題或者疑問可以留言。

Tags:ICEALIALICELICjustice幣值得投資嗎NEURALINK價格alice幣前景Republic of Dogs

火幣交易所
為他人做嫁衣?加密貨幣挖礦病可能正偷偷讓你的電腦幫別人挖礦_比特幣

來源:changelly 編譯:頭等倉 卡巴斯基實驗室數據顯示,去年全年被挖礦病入侵的計算機和移動設備的數量增加了44.5%.

1900/1/1 0:00:00
Bakkt下周上線比特幣期權合約,CME公布推出期權產品計劃_比特幣

比特幣期貨平臺之間的戰爭正在升溫。在Bakkt推出比特幣期權合約后不到一周時間,芝加哥商品交易所也公布了其新的比特幣期權合約細節.

1900/1/1 0:00:00
Layer0層擴容,做區塊鏈的CDN_LAYER

最近研究了一下Bloxroute這個項目,算是擴容方案里面比較獨特的,其參考了互聯網時代的CDN的思路,它基本沒有動共識相關的東西,而是重新構建了一個中心化的網絡.

1900/1/1 0:00:00
Kelly Loeffler獲參議院席位將卸任,Bakkt將迎來新CEO_ICK

首個提供現金結算比特幣期貨合約的平臺Bakkt的首席執行官KellyLoeffler,將辭去這個職位,以獲得美國參議院的一個席位。在找到接替者之前,洲際交易所將任命一名臨時CEO.

1900/1/1 0:00:00
主流采用日漸明朗,NYDIG比特幣期貨基金獲批可向機構投資者發售股票_比特幣

據Cointelegraph12月7日報道,專注于期貨的紐約數字投資集團有限責任公司比特幣策略基金已獲得美國證券交易委員會的批準,有權向機構投資者發售股票.

1900/1/1 0:00:00
區塊鏈的過去十年:回顧2010年至2020年_區塊鏈

來源|ConsenSys 編輯|Summer 2009年1月3日,在全球金融危機加劇全球經濟不平等鴻溝的背景下.

1900/1/1 0:00:00
ads